brainhack

Predicting feedback perception in an online language learning task using EEG and machine learning

In this project, we aim to use machine learning on EEG data from participants’ language learning tasks on Duolingo. Specifically, we ask if EEG features can predict whether the participant has gotten a task right or wrong when they receive feedback. Using a k-nearest neighbours classifier, we achieve 98% accuracy in determining correct or incorrect answers based on EEG voltages from 8 electrodes.

Continue reading

Analyzing variability of working memory and reward processing in children with and without ADHD using fMRI data

The focus of our project was to gain experience using neuroimaging tools to preprocess, analyze, and visualize functional MRI data. We aimed to explore differential variability in brain connectivity among children with and without ADHD. Project reports are incorporated on the BHS website.

Continue reading

Diagnosing Schizophrenia from Brain Activity

Computational Psychiatry is growing trend that applies machine learning methods to psychological disorders. How well can we predict schizophrenia diagnosis from brain activity? This project uses neuroimaging tools from Nilearn, and machine learning tools from scikit-learn to differentiate patients diagnosed with schizophrenia from healthy controls using resting state fmri data.

Continue reading

Resting State Functional network connectivity changes in reward network of adoloscents who are at risk for addiction.

This project will walk you through visualizing functional network connectivity based on a custom mask of ROIs of interest and visualize those network changes across time

Continue reading

This is an example project page which serves as a template

Each project repository should have a markdown file explaining the background and objectives of the project, as well as a summary of the results, and links to the different deliverables of the project. Project reports are incorporated in the BHS website.

Continue reading