Schizophrenia prediction: use of Neuroimages and Artificial Intelligence Models

Schizophrenia (SZ) involves significant alterations in perception, thoughts, mood, and behavior. This project aims to develop an AI model using machine learning for complementary SZ diagnosis, utilizing prefrontal cortex connectomics and tractography techniques. It focuses on creating scripts for data separation, comparing classification models, and analyzing the connectome of healthy individuals and those with SZ. Early detection and accurate diagnosis through machine learning will enable targeted interventions, improving outcomes for individuals with SZ.

Continue reading